Kirszbraun’s Theorem and Metric Spaces of Bounded Curvature
نویسندگان
چکیده
We generalize Kirszbraun’s extension theorem for Lipschitz maps between (subsets of) euclidean spaces to metric spaces with upper or lower curvature bounds in the sense of A.D. Alexandrov. As a byproduct we develop new tools in the theory of tangent cones of these spaces and obtain new characterization results which may be of independent interest.
منابع مشابه
Completeness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملCone normed spaces
In this paper, we introduce the cone normed spaces and cone bounded linear mappings. Among other things, we prove the Baire category theorem and the Banach--Steinhaus theorem in cone normed spaces.
متن کاملSome Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces
In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...
متن کاملBounded Curvature Closure of the Set of Compact Riemannian Manifolds
In this note we consider the set of metric spaces which are the limits with respect to Lipschitz distance dL of compact connected C°°-Riemannian manifolds of curvature uniformly bounded above and below. We call this set "bounded curvature closure" (BCC). It is well known that the limit spaces need not be C-Riemannian manifolds [P, Example 1.8]. Hence, the problem arising is to give a geometrica...
متن کامل